

MONETISATION FACTORS FOR TRUE PRICING

Version 2.0.3 (2021) - November 2021

Authored by True Price Foundation

About True Price

True Price is a social enterprise with the mission of making sustainable products that are affordable to all a reality, by enabling consumers to see and voluntarily pay the true price of products they buy.

We envision a world where all products are sold for a "true price". If a product is sold for a true price, then no damage is done to people or to nature, and that product is fully sustainable. If all products were sold for a true price, then the global economy would be sustainable.

True Price was founded in 2012 and has subsequently developed into a world-leading expert in methods and tools to measure and monetise societal impact. It has calculated the true price of dozens of products around the world and has seen a growing appreciation of the concept among companies, governments and consumers. Now in 2021, we feel that the time is right to focus on realising true pricing, a system where consumers and businesses can see, improve and voluntarily pay the true price of their products.

For more information visit: www.trueprice.org.

True Price

Haarlemmerplein 2 1013 HS Amsterdam The Netherlands

Tel.: +31 202 403 440 info@trueprice.org

2021, True Price Foundation

The text in this document is licensed under a Creative Commons Attribution-NoDerivs 4.0 International. For more information consult <u>Attribution-NoDerivs CC BY-ND</u>. Available at: https://creativecommons.org/share-your-work/licensing-examples/#nd

Version 2.0.3 - November 2021

True Price, 2021: Monetisation Factors for True Pricing Version 2.0.3 (Authors: P. Galgani et al.). Amsterdam.

Lead Authors: Pietro Galgani, Dimitra Kanidou, Jude Bernard, Anne Mesguich

(Contributing) Authors of this and previous versions: Adrian de Groot Ruiz, Reinier de Adelhart Toorop, Bart van Veen, Emmanouela Varoucha, Mats Hoppenbrouwers, Andrea Rusman, Floor van den Elzen, Roland van Keeken, , Michel Scholte, Valerius Vandru Hartanto, and Lewis Zwart.

Acknowledgements: This publication would not have been possible without the contributions of all current and past members of the True Price team and the partners of True Price.

Table of Contents

Change log	1
Version log	1
Abbreviations	4
1 Introduction	5
1.1 Content of this publication	5
1.2 Methodological foundation	6
1.3 What the monetisation factors can be used for	6
1.4 Who should use this publication	6
1.5 Reader's guide	7
2 About the true pricing methodology	8
2.1 What is the true price?	8
2.2 How the true price is calculated	8
2.3 What monetisation factors are based on	9
2.4 How monetisation factors are derived	10
2.5 Examples of the derivation of monetisation factors	11
2.6 Key limitations	12
2.7 Next steps	13
3 Impacts and indicators for true pricing	14
3.1 Environmental impacts	14
3.2 Social impacts	19
4 Monetisation factors for true pricing	24
4.1 Environmental impacts	24
4.2 Social impacts	38
Glossary	43
Peferences	11

Change log

True Price aims for its monetisation factors to be the most representative approximation of external costs given the latest knowledge and available data. As such, when more representative methods of calculation or more accurate data are identified, the existent monetisation factors are updated accordingly.

Version log

1 (2020) First version

2.0.3 (2021) Current version

The current revision focused primarily on the environmental monetisation factors. While some changes were made to social factors, a comprehensive review of these is planned for the next revision.

Table 1 details the changes that have been made between the current and previous version of this work.

Table 1: Log of changes from previous to current version

#	Change	Description of change	Monetisation factor(s) affected
1	New model endpoint valuation of pollution	The calculation of air, soil and water pollution is now based on endpoint valuation based on ReCiPe 2016. It previously relied on valuation by CE Delft which in turn relied on ReCiPe 2008. ReCiPe 2016 provides a more recent and country-specific model ¹ . This has resulted in a	 Toxic emissions to air / soil / water Particulate matter (PM) formation Acidification Ozone layer depleting emissions Photochemical Ozone Formation
		change in value for concerned impacts².	
2	Removed regional adjustment of VSL and DALY valuation	The calculation of certain compensation and restoration elements include the use of the Value of a Statistical Life (VSL) and the value of a Disability Adjusted Life-Year (DALY) derived from this. Previously, the VSL was exchanged into the local currency using a PPP exchange rate, mirroring the method for penalty calculations. The PPP exchange has been removed, maintaining a singular VSL for all localities and resulting in a higher global factor.	 Toxic emissions to air Human toxicity Toxic emissions to water Human toxicity Toxic emissions to soil Human toxicity Particulate matter (PM) formation Photochemical Ozone Formation Workers who experienced harassment (all types) Insured non-fatal occupational incidents

1

¹ The change from ReCiPe 2008 to ReCiPe 2016 affects the indicators to quantify impacts in different ways. For most impacts the latest version of ReCiPe is compatible with the previous one. However, there is one exception: terrestrial ecotoxicity. For this indicator ReCiPe 2016 provides 1000 times increased quantification factors compared to ReCiPe 2008, which affects the monetisation magnitude accordingly. Users of the monetisation factors version 2.0.3 should apply these to midpoint level results from ReCiPe 2016, or from other suitable impact assessment methods.

² The majority of the affected monetisation factors increased in value. However, Photochemical Ozone Formation, Marine Ecotoxicity and Terrestrial Ecotoxicity decreased.

#	Change	Description of change	Monetisation factor(s) affected
		The change has resulted in a higher global factor for health-related impacts.	 Uninsured non-fatal occupational incidents Fatal occupational incidents
3	Improved factor for eutrophication	A more representative source has been selected for the monetisation of eutrophication of marine and freshwater (Prokofieva et al., 2011). This has led to decrease in value for the related monetisation factors.	Freshwater eutrophicationMarine eutrophication
4	New impact: nitrogen deposition	New methods to assess the impact of material effects on the environment have been developed. A new impact was added in accordance with these effects.	Nitrogen Deposition
5	New impact: soil compaction	New methods to assess the impact of material effects on the environment have been developed. A new impact was added in accordance with these effects.	Soil compaction
6	New indicator: Photochemical Oxidant Formation (NO _x)	New methods to assess the impact of some pollutants has been applied. A new indicator was added in accordance with these effects.	• Photochemical Ozone Formation (NO _x)
7	Removal of selected penalties	It was determined during this review that some impacts which initially had penalties are not, in fact, illegal, and should not have a penalty element. The removal of the penalty has resulted in lower monetisation factors.	 Insufficient income Wage gap from gender discrimination Wage gap from unequal opportunities
8	Revision of penalties database	In reviewing the developed monetisation factors, some adjustments were made in the model to correct errors; this resulted in changes in some factors. The revision affected the following penalties (change with respect to previous version): underpayment (increase), maternity leave (increase), forced labour-min (decrease), forced labour-max (decrease), work exposed to H&S breaches (decrease), incidents with H&S breaches (decrease), violations of freedom of association rights (decrease)	 Wage gap workers earning below minimum wage Female workers without maternity leave provision Forced workers (least severe) Forced workers (medium severe) Forced workers (most severe) Work performed in violation of H&S standards Occupational injuries with breach of H&S standards Instances of denied freedom of association
9	Revision of selected definitions	The definitions of selected impacts have been revised in collaboration with experts.	 Air pollution Water pollution Soil pollution Soil degradation Forced labour Gender discrimination Insufficient income Occurrence of harassment

#	Change	Description of change	Monetisation factor(s) affected		
			Negative effects of employee health &		
			safety		
10	All factors inflated	Factors in this publication are at 2021 price	All factors		
	to 2021	levels.			
11	Contribution to	While all factors are simply inflated from one	Contribution to Climate change		
	Climate Change	year to the next, for Contribution to Climate			
	factor increased	Change a higher increase each year is applied,			
	by 3%	following the so-called Hotelling Rule (Galgani			
		et al., 2021e).			
12	Correction	The inflation of Land occupation and Land	All Land use factors		
	inflation of land	transformation factors has been corrected by	All Land use change factors		
	occupation and	updating the year of the original data point. This			
	transformation	has resulted in an increase in value for all related			
		factors.			
13	Updated PPP	The calculation of penalty and compensation	All factors with a penalty element		
	exchange,	elements involved in some monetisation	• All factors with a compensation		
	inflation and	factors requires the use of PPP exchange,	element		
	interest rates	inflation and (potentially) interest rates, to			
		translate one currency into another and update			
		it up to the current year. The previously used			
		values for these were replaced by more			
		accurate and updated values published by the			
		same source, resulting in lower global factors.			

Abbreviations

1,4-DB eq
 1,4-Dichlorobenzene equivalent
 CFC11 eq
 CHRB
 Corporate Human Rights Benchmark

CO₂ eq Carbon Dioxide equivalent

Cu eq Copper equivalent

DALY Disability Adjusted Life Year

FAO Food and Agriculture Organization

FAOSTAT Food and Agriculture Organization Corporate Statistical Database

FTE Full Time Equivalent H&S Health and Safety

ILO International Labour Organization

IPCC Intergovernmental Panel on Climate Change
ISO International Organization for Standardization

LCA Life Cycle Assessment

MSA Mean Species Abundance

OECD Organisation for Economic Cooperation and Development

SAI Social Accountability International

SOC Soil Organic Carbon

SO₂ eq Sulphur Dioxide equivalent

TEEB The Economics of Ecosystems and Biodiversity

TPMD True Price Monetization Database

TPS True Price Standard
PM Particulate Matter
UN United Nations

UNEP United Nations Environment Programme

UNICEF United Nations International Children's Emergency Fund

VSL Value of a Statistical Life
WHO World Health Organization

WWF World Wildlife Fund

1 Introduction

1.1 Content of this publication

Current knowledge and technology enable us to account for external costs: We can determine the hidden costs of production and consumption of products, and we can remediate external costs at a local level. However, the infrastructure to measure and remediate external costs at a large scale does not yet exist. Nonetheless, many publications already exist on the monetisation of various environmental external costs at the product level, often in the context of a Life Cycle Assessment (LCA). This publication presents a database of monetisation factors for the accounting of both environmental and social external costs.

Over the past nine years, True Price has developed principles and a methodology to monetise a wide set of social and environmental costs. This document is the first update to the original Monetisation Factors for True Pricing published in 2020. That publication provided the first open access version of the monetisation factors developed by True Price as a step towards an open access True Price Monetisation Database (TPMD). It aims to facilitate the adoption and application of true pricing, fill a gap in the literature and accelerate standardisation. This updated version contains improved and extended monetisation factors. A full overview of changes compared to the previous version can be found in the change log at the start of this document.

True Price is working towards a True Pricing Standard (TPS) consisting of open access principles, methodologies and guidance. In doing so, we promote a participatory process by inviting experts, stakeholders and practitioners to provide input and help to make both the TPS and accompanying TPMD scientifically and normatively sound, comprehensive and applicable.

Monetisation factors are estimates of the remediation cost of the social and environmental impacts that must be included to estimate the true price of a product. These impacts are measured by a set of footprint indicators³ and every footprint indicator can be converted to a monetary unit using the corresponding monetisation factor. When all footprint indicators are measured and monetised for a product, the true price can be calculated.

This publication provides monetisation factors for ten environmental and ten social true price impacts and their footprint indicators and sub-indicators, along with an explanation of the interpretation and sources. The monetisation factors are all expressed in euros at 2021 price levels. Ideally, monetisation factors should be regional, as an impact in one place may be different from the same impact elsewhere. In this publication, an overview of global monetisation factors is provided. Unless otherwise stated, these global monetisation factors represent a global average. Methodologies to derive regional/country-specific factors will be available in forthcoming publications (see Section 2.7).

-

³ The indicators are comparable to the impact category mid-point and end-point indicators of an LCA.

1.2 Methodological foundation

A brief overview of the methods used is given in Section 2. For an explanation of the principles and framework used to select the footprint indicators and monetisation factors, refer to the <u>Principles for True Pricing</u> (True Price Foundation, 2020). A full justification will be available in forthcoming publications, detailing the Natural, Social and Human Capital methodologies underlying these factors.

True Price collaborates with different partners to develop methodologies for specific sectors and applications. One of these collaborations is the public-private partnership *True and Fair Price for Sustainable Products* with *Bionext, Wageningen Economic Research* and several other partners. The goal of the collaboration is to develop a comprehensive, broadly supported and publicly available methodology for true pricing of agri-food products. A *valuation framework* and an *assessment method* for the true pricing of agri-food products were developed (Galgani et al., 2021d; Galgani et al., 2021a), together with *method modules* to specifically assess the environmental (Galgani et al., 2021b, 2021c, 2021e, 2021f, 2021g, 2021h) and social impacts (under development).

More information on current collaborations can be found on www.trueprice.org.

1.3 What the monetisation factors can be used for

The monetisation factors included in this publication are to be used primarily in the context of true pricing. When calculating true prices as described in the <u>Principles for True Pricing</u> (True Price Foundation, 2020), these monetisation factors provide the key to expressing external costs (negative social and environmental impacts) in monetary terms.

True Price ultimately wants to enable everyone to calculate and publish true prices and is working towards sectoral guidelines that would allow anyone to get started (such as the *True Pricing Assessment Method for Agri-Food Products* (Galgani, de Adelhart Toorop & Woltjer, 2021)). Until these guidelines will be published, we propose the users of these monetisation factors refer to external costs calculated with these factors as "social and environmental costs calculated with the true price method", rather than "true prices" to safeguard consistency and comparability between true prices calculated by different organisations. If you are interested in calculating and disseminating "true prices" as such, please get in touch with True Price.

The monetisation factors can also be applied in various applications outside of true pricing, including (i) to monetise negative externalities in true cost accounting and impact assessments, (ii) to monetise impacts pertaining to the welfare dimension *respect of basic rights* for Integrated Profit & Loss statements, in line with the *Framework for Impact Statements* (Impact Institute, 2019), and (iii) as weighting factors for LCA.

The monetisation factors provided in this publication are a work in progress. We invite you to check regularly for updates on www.trueprice.org.

1.4 Who should use this publication

This publication is intended mainly for experts, researchers and practitioners who are active in the field of true pricing, impact assessment, impact-weighed accounts, true cost accounting or LCA.

1.5 Reader's guide

This publication consists of four sections: this section is an introduction; Section 2 briefly discusses the concept of true pricing and the methodology used to derive the monetisation factors; Section 3 provides an overview of the impacts relevant for true pricing, along with their definitions and footprint indicators; Section 4 provides the monetisation factors.

In addition, a glossary of key terms is included at the end of the publication and a change log to track changes from previous versions is included at the begin of the publication.

2 About the true pricing methodology

This section provides a brief discussion about true pricing methodology, focusing on the most important concepts to derive and apply monetisation factors. For more information on the principles and framework behind this methodology, see the *Principles for True Pricing* (True Price Foundation, 2020). A more detailed discussion of the true pricing methodology can be found in forthcoming documents (see Section 2.7).

2.1 What is the true price?

The true price is a way to make the external costs of producing and consuming a product explicit. *External costs* are the costs associated with negative externalities. These are the negative effects on external stakeholders who did not participate in the production or consumption of that product (or, if they did, did not do so sufficiently freely). Externalities include effects on the environment, such as climate change and water pollution, and on people, such as health and safety accidents and child labour.

True pricing makes external costs explicit by assessing them on a per-unit basis and by monetising them—that is, expressing them in a monetary way (e.g., in euros or dollars), just as with conventional costs. The sum of all external costs assessed in this way is called the "true price gap". The true price gap can be compared directly to the market price of the product: the two are added together to get to the true price. The true price can be interpreted as how much the product *truly costs*. It includes costs to the buyer (the market price) and the costs to external stakeholders (the true price gap).

We believe true pricing—expressing externalities as discussed above—can contribute to the transformation towards a more sustainable economy. (See <u>A roadmap for true pricing</u> (True Price Foundation, 2019)) for more on the applications of true pricing by businesses, consumers and governments.)

2.2 How the true price is calculated

Calculating the true price of a product requires calculating the true price gap and adding that to the market price. Calculating the true price gap in turn requires expressing all relevant externalities in monetary terms. This raises two questions: how to assess which externalities should be taken into account, and how to quantify and monetise them.

For the first question, the true price method takes a rights-based approach. Internationally accepted rights and agreements are taken as a starting point in determining which externalities should be included. The resulting subset of externalities—referred to as 'unsustainable externalities' or 'unsustainable impacts'—is the set of negative effects of producing and consuming products that should be factored into the true price gap.

Rights that are considered are the basic rights of all people as specified by international conventions, and include human rights, fundamental labour rights and environmental rights. True pricing is based on the normative idea that, to reach sustainability, the rights of all stakeholders, including future generations, should be respected by markets and the economy. For more details, refer to the *Principles for True Pricing*. (In particular, Chapter 1 presents the normative foundations, Annex A contains principles and definitions,

and Annex C contains a (preliminary) list of all impacts that are to be included in a true price analysis, with a reference to which basic rights the impacts relate to.)

The second question is how to quantify and monetise these externalities. For each of the relevant impacts, the size of the impact in natural unit (or 'footprint') can be measured or estimated using primary or secondary sources (e.g., LCAs). Examples of footprints are the emission volumes of greenhouse gases per unit product (for determining the contribution to climate change), and hours of child labour per unit product. The impact expressed in its natural units (or footprint indicators) can then be multiplied by the monetisation factor for that impact.

The following section explains how this is done.

2.3 What monetisation factors are based on

Principles on what perspective to take are needed to determine the monetisation factor for an impact. For example: greenhouse gas emissions can result in climate change, which imposes large costs on society; the most disastrous effects of climate change could be prevented by taking a set of costly measures now. These two sets of costs are both associated to carbon emissions but are likely to be different. So, it is important to use a coherent framework to define the monetisation factors used in true pricing.

The <u>Principles for True Pricing</u> document defines the principle of remediation that monetisation can be based on. This is inspired by, among others, the <u>UN Guiding Principles on Business and Human Rights</u> (UN, 2011) and links directly to the rights-based approach.

Article 22 in the UN Guiding Principles reads,

Where business enterprises identify that they have caused or contributed to adverse impacts, they should provide for or cooperate in their remediation through legitimate processes.

What remediation entails is explained further in the commentary to Article 25:

Remedy may include apologies, restitution, rehabilitation, financial or non-financial compensation and punitive sanctions (whether criminal or administrative, such as fines), as well as the prevention of harm through, for example, injunctions or guarantees of non-repetition.

The true price methodology implements the principles of remediation by identifying the following four types of costs that, when appropriately combined, form the remediation cost for an impact: 1) Restoration costs, 2) Compensation costs, 3) Prevention of re-occurrence costs and 4) Retribution costs.

1) Restoration costs

Restoration costs are the cost of bringing people's health, wealth, circumstances, capabilities, or environmental stocks and qualities to the state they would have been in the absence of the social and environmental damage associated with an impact (e.g., cost of ecosystem restoration). Restoration cost is applied for impacts where restoration is feasible, or feasible and more economically efficient than compensation, when the damage to people or communities is not severe.

2) Compensation costs

Compensation costs are the cost of compensating affected people for economic and/or non-economic damage caused by the social and environmental impacts of producing or consuming a product. In the valuation literature, this is also called "damage cost" (e.g., compensating for denied income, or the value of lost human health). Non-economic damage can be assessed using the best available stated and revealed preference valuation techniques. Compensation costs are part of the remediation costs for impacts where restoration is not considered feasible.

3) Prevention of re-occurrence cost

Prevention of re-occurrence cost represents the cost that would be incurred in the future to avoid, avert or prevent the identified social and environmental impacts of a product from occurring again (e.g., the cost of introducing human rights audits in a supply chain). Prevention of re-occurrence cost is part of the remediation costs, in addition to restoration or compensation, when the damage is considered more severe and irreversible. Whereas the other types of costs refer to realised damage, this cost relates to the *prevention* of future damage. It finds its basis in, among others, the *UN Guiding Principles* mentioned above that acknowledge a responsibility to prevent the re-occurrence of human rights breaches (UN, 2011).

4) Retribution cost

Retribution costs are the cost associated with fines, sanctions or penalties imposed by governments for certain violations of legal or widely accepted obligations. They represent the damage to society caused by the breaking of laws. For impacts that correspond to the breach of a legal or a widely accepted obligation, retribution costs are part of remediation costs, over and above restoration, compensation and/or prevention of re-occurrence costs.

2.4 How monetisation factors are derived

To derive monetisation factors for a given impact, the following approach is followed:

- 1. The types of damage that are associated to the impact are determined based on existing literature.
 - Damage can be either damage to people or to the environment. In some cases, the damage has already occurred (i.e., damage in the past; it is irreversible).
 - In other cases, the future damage *might* occur unless it is prevented (namely, reversible future damage), or is *certain to occur* (namely, irreversible future damage).
 - The damage can also be assessed as severe or non-severe.
 - Which of the four types of remediation cost (i.e., Restoration, Compensation, Prevention cost of re-occurrence or Retribution) applies is assessed from the rules in Section 2.3.
 - More than one type of cost might be relevant (e.g., both Compensation costs and Prevention
 costs of re-occurrence). In some cases, the choice of cost may vary, depending on the country
 or region where the impacts take place, leading to different monetisation factors in different
 geographies.
- 2. The relevant costs are quantified, based on economic modelling and data available in the literature, in a way that can be attributed linearly to one unit of impact, as measured by the footprint indicators.

- 3. The quantified cost(s) are summed to form monetisation factors.
 - For impacts that have only one footprint indicator, this is a single monetisation factor. For impacts that have a set of distinct footprint indicators, there are monetisation factors for each.

These steps are carried out for each of the social and environmental impacts considered, resulting in 87 monetisation factors. A few examples are presented in the following section. Sections 4.1 and 4.2 show the results of this procedure for the true price indicators that have been robustly assessed so far.

Once the footprint indicators are quantified for a specific product and multiplied by the respective monetisation factors, the contribution to the true price gap can be determined.

2.5 Examples of the derivation of monetisation factors

This section provides two examples to show the process of identifying elements that contribute to the monetisation factors.

Contribution to climate change

Greenhouse gas emissions have been shown to change climate patterns globally. Anthropogenic activities increasingly disrupt climatological patterns, which has long-lasting impacts on human and natural environments. Climate-related risks include extreme temperatures and increases in the frequency, intensity, or amount of heavy precipitation, or droughts and precipitation deficits in other regions. Ultimately, climate change results in severe economic damage and damage to human health (e.g., malnutrition or increased risk of diseases) and ecosystems (for example, see IPCC (2018) for more information).

It is not yet too late to curb emissions and limit temperature increases to the *2-degree scenario* as specified in the Paris Agreement. However, measures to do so come with costs. Marginal abatement costs for the 2-degree scenario can be seen as the carbon price required to restore greenhouse gas levels in the atmosphere to a safe level. As a result, the monetisation factor for climate change has only one element: a restoration element that follows from a meta-study of marginal abatement cost models (Kuik, Brander and Tol, 2009). Compensation cost, prevention-of-recurrence and retribution costs do not apply in this case.

Child labour

Child labour refers to work done by children beyond what is allowed by law: in most countries, children above a certain age are allowed to do light and non-hazardous work for a specified number of hours per day or week.

Child labour severely damages children. The damage includes missed education and lower future earnings (if the children were not able to attend school), and, in some cases, physical and psychological damage (mostly for the more severe forms of child labour) (ILO, 2003, ILO, 2019a).

For severe damage to people that is reversible, the cost of restoration is included in the remediation cost (see Section 2.3). For example, restoration can occur through provision of quality education for underage

workers not attending school, or through reintegration programmes for children involved in hazardous child labour. The monetisation factor contains the costs associated with these restoration activities.

For types of damage that cannot be restored, the compensation cost is taken into account. This includes compensation for the loss of future earnings due to lost years of education during childhood that cannot be regained. As the damage is severe, and not fully restorable, the cost of measures to guarantee non-reoccurrence should be factored in. The cost of an audit that verifies that child labour is not present in a supply chain is also included.

Finally, retribution also applies, as there is always a breach of the law. Retribution costs are estimated from a weighted average of penalties for forms of child labour that are derived from various countries.⁴

2.6 Key limitations

The monetisation factors contained in this publication and the true price methodology are a work-in-progress.

There are various limitations associated with the current factors that should be mentioned:

- The list of monetisation factors included here is not complete with respect to all impacts mentioned in the <u>Principles for True Pricing</u>. The coverage of the current impacts is more complete for impacts related to environmental rights and worker rights. Impacts related to rights of local and indigenous communities and society at large have not yet been covered. There are also some gaps for environmental impacts, particularly for impacts not commonly assessed in LCA, such as biodiversity loss (other than that related to land use change or pollution). Furthermore, as mentioned, many factors are local and this publication addresses only global factors.
- The methodology is new and contains various normative assumptions. Translating principles into measurable targets and remediation categories thus requires interpretation.
- Significant model and data uncertainties exist regarding the estimates of restoration, compensation (damage), prevention and retribution costs. In particular, retribution cost is an innovation in valuation and damage cost is not always available. In many cases, a best estimate based on proxy data was used, although there may be some impacts that have not been modelled. This leads to a possible underestimate of the remediation cost.
- This database depends on datapoints from a very large variety of sources for social and environmental impact measurement and valuation. Even though significant effort has been put into standardizing assumptions and modelling choices used across indicators, including exchange rates, inflation rates, discount rates and valuation coefficients of human health and biodiversity, the presence of inconsistencies cannot be excluded.
- Alignment with the many existing standards and methods for sustainability reporting and impact
 measurement would be desirable, when developing a method that aims to be useful to many

-

⁴ A global average is used instead of a local value in each country to negate the idea that the health of a child is worth more in some countries than in others.

types of businesses and is applied to many types of products. As much as possible efforts have been made to work towards this end. However, this alignment is demanding and it has not been reached fully in this version.

While care was taken to come to the present version of monetisation factors, these can and will, no doubt, be improved. True Price and its partners are committed to developing these standards and methods.

2.7 Next steps

In collaboration with our partners, True Price is continuously refining the monetisation factors and developing the methodology further. We invite you to check regularly on www.trueprice.org for more new publications, such as more detailed description of the methodology, including guidelines on how to apply it in practical cases and background papers on the methods, data and reasoning behind these monetisation factors.

We welcome feedback from valuation and true cost accounting specialists and users. We would be grateful for you to send your input to info@trueprice.org.

3 Impacts and indicators for true pricing

3.1 Environmental impacts

Table 2 provides an overview of all true pricing environmental impacts that are in scope of this publication. A total of 10 impacts is provided, along with their definition, footprint indicator(s) and sub-indicator(s) used to quantify them and corresponding unit. This list is not exhaustive, and more impacts, indicators and sub-indicators may be added in the future. Environmental indicators are largely based on the ReCiPe life cycle assessment methodology (Huijbregts et al., 2016).

Table 2: Overview of environmental impacts in true pricing.

Impact category	Impact	Definition	Footprint indicator	Footprint sub-indicator	Unit
Contribution to	Contribution to	Contribution to climate change from emissions of	Greenhouse gas (GHG)		kg CO₂-eq
climate change	climate change	greenhouse gases (carbon dioxide, methane, nitrous	emissions		
		oxide and others). Emissions of greenhouse gases			
		increase their atmospheric concentration (ppb), which			
		increases the radiative forcing capacity and			
		consequently increases the global mean temperature.			
		Ultimately, extreme weather patterns, reduced			
		agricultural yields and increased frequency of natural			
		disasters can result in damage to the economy, human			
		health – e.g., increased risk of diseases, natural disasters			
		- and ecosystems (Huijbregts et al. 2016).			
Pollution of the	Air pollution	Impacts caused by emissions to air other than climate	Toxic emissions to air	Human toxicity	DALY ⁵
living		change, namely ozone layer depletion, acidification,		Terrestrial ecotoxicity	kg 1,4-DB emitted to
environment		photochemical oxidant formation, particulate matter			industrial soil eq
		formation, nitrogen deposition from emissions to air,		Freshwater ecotoxicity	kg 1,4-DB emitted to
		terrestrial and aquatic ecotoxicity and human toxicity			freshwater eq

⁵ DALY, Disability Adjusted Life Year (WHO, 2019)

Impact category	Impact	Definition	Footprint indicator	Footprint sub-indicator	Unit
		from toxic emissions to air, as defined in LCA		Marine ecotoxicity	kg 1,4-DB emitted to
		methodologies.			seawater eq
			Particulate matter (PM)		kg PM2.5 eq
			formation		
			Photochemical oxidant		kg NMVOC
			formation (POF)		
			Photochemical oxidant		kg NO _x eq
			formation (POF) NO _x		
			Acidification		kg SO₂-eq
			Ozone layer depleting		kg CFC11-eq
			emissions		
			Nitrogen deposition NH₃	NH₃ from animal husbandry	kg NH₃
				(in stables)	
				NH₃ from use of manure	kg NH₃
				NH₃ from other sources	kg NH₃
			Nitrogen deposition NO _x	NO _x from use of machines	kg NO _x
				and vehicles	
				NO _x from other sources	kg NO _x
Pollution of the	Water pollution	Emissions to water contributing to ecotoxicity and	Toxic emissions to water	Human toxicity	DALY
living		human toxicity, as well as eutrophication of marine- and		Terrestrial ecotoxicity	kg 1,4-DB emitted to
environment		freshwater. Eutrophication occurs due to the runoff and			industrial soil eq
		discharge of nutrients, for example from leaching of		Freshwater ecotoxicity	kg 1,4-DB emitted to
		plant nutrients into soil, marine and freshwater bodies			freshwater eq
		and the subsequent rise in nutrient levels, i.e., of		Marine ecotoxicity	kg 1,4-DB emitted to
		phosphorus (P) and nitrogen (N).			seawater eq
			Freshwater		kg P-eq to
			eutrophication		freshwater

Impact category	Impact	Definition	Footprint indicator	Footprint sub-indicator	Unit
			Marine eutrophication		kg N-eq to marine water
Pollution of the	Soil pollution	Eco- and human toxicity caused by emissions to soil. Soil	Toxic emissions to soil	Human toxicity	DALY
living environment		pollution occurs due to the runoff and discharge of contaminants, for example heavy metals.		Terrestrial ecotoxicity	kg 1,4-DB emitted to industrial soil eq
				Freshwater ecotoxicity	kg 1,4-DB emitted to freshwater eq
				Marine ecotoxicity	kg 1,4-DB emitted to seawater eq
Degradation of	Land occupation	The decreased availability of land for purposes other	Land occupation	Tropical forest	MSA*ha*yr
land,		than the current one, through land occupancy. Land		Other forest	
biodiversity and		occupation by agriculture displaces habitats and		Woodland/shrubland	
ecosystems		ecosystems and therefore leads to biodiversity loss and		Grassland/savannah	
		loss of ecosystem services (Milà i Canals et al., 2007;		Inland/wetland	
		Alkemade et al., 2009; De Groot et al., 2012).		Coastal wetland	_
Degradation of	Land	Changes in land-cover that can affect ecosystem	Land transformation	Tropical forest	MSA*ha
land,	transformation	services and the climate system. This impact includes		Other forest	
biodiversity and		the number of natural ecosystems – i.e. (tropical) forest,		Woodland/shrubland	
ecosystems		woodland, grassland, and (inland and coastal) wetland -		Grassland/savannah	
		that are transformed in a certain period of time. Land		Inland/wetland	
		transformation reduces the size of habitats and ecosystems and therefore leads to biodiversity loss and loss of ecosystem services.		Coastal wetland	_

Impact category	Impact	Definition	Footprint indicator	Footprint sub-indicator	Unit
Depletion of	Fossil fuel	The consequence of the primary extraction of fossil	Fossil fuel depletion		kg oil-eq
scare abiotic	depletion	fuels linked to fuel use, energy use and to produce other			
resources		inputs, such as mineral fertilizer. Extraction of crude oil,			
		hard coal and natural gas bears external societal costs			
		because the stock of these materials is reduced for			
		present and future generations. (Huijbregts et al., 2016).			
		In this method, fossil fuel depletion is considered			
		separately from the depletion of other non-renewable			
		materials in line with LCA methodologies.			
Depletion of	(Other) non-	The consequence of the primary extraction of scarce,	(Other) non-renewable		kg Cu-eq
scarce abiotic	renewable material	non-renewable resources besides fossil fuels, such as	material depletion		
resources	depletion	minerals. These bear external societal costs because the			
		stock of these materials is reduced for present and			
		future generations.			
Depletion of	Scarce water use	Concerns the use of blue water in such a way that the	Scarce blue water use		m³ scarce water
scarce abiotic		water is evaporated, incorporated into products,			
resources		transferred to other watersheds or disposed into the			
		sea, in areas where water is scarce (Falkenmark and			
		Rockstrom, 2004). Water that is used as such is not			
		available anymore in the watershed of origin for humans			
		nor for ecosystems (Huijbregts et al., 2016). Scarcity of			
		water depends on the watershed of origin and the			
		geographical context (WWF, 2020).			
Degradation of	Soil degradation	Soil degradation is defined as the physical, chemical and	Soil organic carbon		kg SOC
land,		biological decline in soil quality driven by productive	(SOC) loss		
biodiversity and		activities, like excessive use of irrigation or unbalanced	Soil loss from wind		kg soil lost
ecosystems		use of fertilisers, and it can manifest itself in multiple	erosion		
		ways, for example as loss of nutrients, loss of organic	Soil loss from water		kg soil lost
		matter, increased soil erosion (from water or wind), soil	erosion		-

Impact category	Impact	Definition	Footprint indicator	Footprint sub-indicator	Unit
		compaction, waterlogging and salinization (Lal, 2009).	Soil compaction		corrected tkm
		Soil quality is the capacity of a soil to have the desired			
		soil functions sufficiently available under varying			
		conditions for a combination of objectives such as food			
		production, an efficient nutrient cycle and the			
		preservation of biodiversity (Hanegraaf et al. 2019).			

3.2 Social impacts

Table 3 provides an overview of all true pricing social impacts that are in scope of this publication. A total of 10 impacts is provided, along with their definitions, indicator(s) and sub-indicator(s) used to quantify them and corresponding unit. This list is not exhaustive, and more impacts, indicators and sub-indicators may be added in the future. The set of social impacts is based on the *Principles for True Pricing* (True Price Foundation, 2020, Annex C) and largely in line with labour rights, Human Rights and corporate responsibility standards for business and existing social LCA frameworks (UNEP, 2009; ISO, 2010; SAI, 2014; CHRB, 2018; Van der Velden & Vogtlander, 2017; Benoit-Norris et al., 2012; Croes & Vermeulen, 2015). The set of social footprint indicators is developed by True Price.

Table 3: Overview of social impacts in true pricing.

Impact category	Impact	Definition	Footprint indicator	Footprint sub-indicator	Unit
Child labour	Child labour	Child labour is work that deprives children of their	Underage workers	Underage workers below	child FTE ⁶
		childhood, their potential and their dignity, and is		minimum age for light work	
		harmful to physical and mental development. Whether		(12 or 13) involved in non-	
		participation of children in work is deemed child labour		hazardous economic work	
		depends on age, local regulation on minimum working		Underage workers above	child FTE
		age and minimum age for light work, nature of the work		minimum age for light work	
		and the work relation, as specified by international		and below minimum age (12-	
		institutions such as ILO (1999; 2019a) and UNICEF (2014)		14 or 13-15) involved in non-	
		(See also ISO, 2010). In its most extreme forms, child		hazardous non-light	
		labour involves children being enslaved, separated from		economic work	
		their families, exposed to serious hazards and illnesses		Underage workers below	child FTE
		and/or left to fend for themselves on the streets of large		minimum age (12 or 13)	
		cities (Goedkoop, Idrane, and de Beer, 2018).		involved in hazardous work	
				Workers above minimum age	FTE
				(14 or 15) and below 18	
				involved in hazardous work	

⁶ Full Time Equivalent adapted for legal working hours for underage workers

Impact category	Impact	Definition	Footprint indicator	Footprint sub-indicator	Unit
			Underage workers that		children
			are not attending school		
			Labour force to be		FTE
			audited for child labour		
Forced labour	Forced labour	Forced labour concerns all physical and psychological	Forced workers (least		FTE
		damage from work or service that is claimed under	severe)		
		threat of punishment and for which the person	Forced workers (medium		FTE
		concerned is not autonomously participating. Forced se	severe)		
		labour includes practices such as the use of compulsory	Forced workers (most		FTE
		prison labour by private business entities, debt	severe)		
		bondage, indentured servitude and human trafficking	Forced workers who are		FTE
		(ILO, 2019b).	in debt bondage		
			Forced workers who are		FTE
			victims of abuse		
			Labour force to be		FTE
			audited for forced labour		
Discrimination	Gender	Gender discrimination concerns the effect of	Female workers without		FTE
	discrimination	discriminating, nullifying or impairing equality of	maternity leave		
		opportunity or treatment based on gender and/or sex.	provision		
		Gender discrimination includes insufficient provision of	Value of denied		EUR
		maternity leave and benefits, different pay for the same	maternity leave		
		work between employees of different genders/sexes	Wage gap from gender		EUR
		and different opportunities to access higher pay job	discrimination		
		based on gender and/or sex.	Wage gap from unequal		EUR
			opportunities		
			Labour force to be		FTE
			audited for		
			discrimination		

Impact category	Impact	Definition	Footprint indicator	Footprint sub-indicator	Unit
Non-guarantee	Underpayment in	Underpayment occurs when the actual wages of	Wage gap of workers		EUR
of a decent	the value chain	employees over standard working hours, including	earning below minimum		
living standard		financial wages and some forms of in-kind	wage		
		compensation, lie below the legal minimum wage or a	Wage gap of workers		EUR
		decent living wage. Underpayment in the value chain	earning above minimum		
		can also include underpayment of child labourers and	wage but below decent		
		forced labourers. It excludes underpaid overtime, which	living wage		
		is included under 'Excessive and underpaid overtime'.	Labour force to be		FTE
			audited for insufficient		
			wages		
Non-guarantee	Lack of social	Negative effects of lack of social security (where this is	Workers without legal		FTE
of a decent	security	obliged by law). Social security includes protection	social security		
living standard		against certain life risks and social needs, such as			
		guaranteed income security and health protection. It is	Malara of denied and de		ELID.
		provisioned through cash or in-kind transfers, intended	Value of denied paid		EUR
		to ensure access to medical care and health services as	leave		
		well as income security through one's life, particularly in	Labour force to be		FTE
		the event of illness, unemployment, employment injury,	audited for insufficient		
		maternity, family responsibilities, invalidity, loss of the	social security		
		family breadwinner, as well as during retirement and old			
		age (ILO, 2019c).			
Non-guarantee	Excessive and	Overtime hours worked by employees that are carried	Workers performing		FTE
of a decent	underpaid	out in violation of legal regulations or compensated	illegal overtime		
living standard	overtime	below legal requirements. It does not include	Workers performing		FTE
		underpayment, the gap between liveable and actual	underpaid overtime		
		wages, for standard working hours.	Overtime wage gap		EUR
			Labour force to be		FTE
			audited for illegal		
			overtime		

Impact category	Impact	Definition	Footprint indicator	Footprint sub-indicator	Unit
Non-guarantee	Insufficient income	Smallholder farmers (and other small entrepreneurs	Income gap		EUR
of a decent		with personal liability) in the value chain that have an			
living standard		income below the so-called living income (necessary for			
		a decent standard of living)			
Occupational	Occurrence of	Negative effects of workplace harassment, including	Workers who	Workers who experienced	workers
health and	harassment	verbal and non-verbal, sexual and non-sexual. The term	experienced harassment	non-physical non-sexual	
safety risks		of "harassment" encompasses any act, conduct,		harassment	
		statement or request which is unwelcome and could, in		Workers who experienced	workers
		all the circumstances, reasonably be regarded as		non-physical sexual	
		harassing behaviour of a discriminatory, offensive,		harassment	
		humiliating, intimidating or violent nature or an intrusion		Workers who experienced	workers
		of privacy. This impact includes bullying/mobbing and		physical non-sexual	
		sexual harassment (ILO, 2013).		harassment	
				Workers who experienced	workers
				non-severe physical sexual	
				harassment	
				Workers who experienced	workers
				severe physical sexual	
				harassment	
			Labour force to be		FTE
			audited for harassment		
Lack of union	Lack of freedom of	Workers that are not given the right of freedom of	Instances of denied		violations
rights	association	association: the extent to which workers have the right	freedom of association		
		to establish and to join organisations of their choice			
		without prior authorisation, to promote and defend			
		their interests, and to negotiate collectively with other	Labour force to be		FTE
		parties. They should be able to do this freely, without	audited for denied		
		interference by other parties or the state, and should	freedom of association		
		not be discriminated against as a result of union			

Impact category	Impact	Definition	Footprint indicator	Footprint sub-indicator	Unit
		membership. The right to organise includes the right of			
		workers to strike and the rights of organisations to draw			
		up constitutions and rules, to freely elect			
		representatives, to organise activities without			
		restriction and to formulate programmes (UNEP, 2009).			
Occupational	Negative effects of	Impact on workers' health and safety at work,	Non-fatal occupational	Insured non-fatal	Incidents
health and	employee health &	specifically the extent to which working in the value	incidents	occupational incidents	
safety risks	safety	chain negatively affects the safety and overall health		Uninsured non-fatal	Incidents
		status of the workers. The term health, in relation to		occupational incidents	
		work, indicates not merely the incidence of	Fatal occupational		Incidents
		occupational disease or infirmity, but also includes the	incidents		
		physical and mental elements affecting health, which	Occupational incidents		Incidents
		are directly related to safety and hygiene at work (ISO	with breach of H&S		
		2010; Goedkoop et al., 2018). Safety is understood as the	standards		
		extent to which working can lead to fatal and non-fatal	Work performed in		FTE
		injuries, as well as the application of prevention	violation of H&S		
		measures and management practices to reduce their	standards		
		incidence.	Labour force to be		FTE
			audited for H&S		

4 Monetisation factors for true pricing

4.1 Environmental impacts

Table 4 provides the monetisation factors for all environmental impacts and corresponding footprint indicators in true pricing. Each monetisation factor represents a restoration, compensation, prevention or retribution cost, or a combination of those, as explained in Section 2.3. An explanation of the types of costs and sources is also provided. All values are expressed in euro 2021 and International \$ 2021.

Table 4: Monetisation factors for environmental impacts in true pricing.

lman a ab			Monetisation	Monetisation	Cynlenskian
Impact	Footprint indicator	Footprint sub-indicator	factor (EUR)	factor (Int.\$)	Explanation
Contribution to	Greenhouse gas (GHG)		0.157	0.224	A restoration cost which expresses the abatement cost for
climate change	emissions		EUR/kgCO2eq	Int.\$/kgCO2eq	achieving the policy targets of reducing greenhouse gas
					emissions to meet the 2-degree target as set in the Paris
					Agreement, based on a meta-study of 62 marginal abatement
					cost estimates (Kuik, Brander and Tol, 2009).
Air pollution	Toxic emissions to air	Human toxicity	103,000	119,000	A compensation cost which expresses the value of a Disability
			EUR/DALY	Int.\$/DALY	Adjusted Life Year (DALY) based on a meta-analysis of the
					Value of Statistical Life (VSL) from 92 willingness-to-pay
					studies, carried out by the OECD (Biausque, 2012).
		Terrestrial ecotoxicity	0.0003 EUR/kg	0.0004 Int.\$/kg	A compensation cost which expresses the social cost of
			1,4-DB emitted	1,4-DB emitted	pollution and indicates the occurring loss of economic welfare
			to industrial soil	to industrial soil	when pollutants are emitted to the environment, looking at
			eq	eq	ecosystems damage. Ecosystems damage is valued looking at
					the value of ecosystems services lost, which are in turn valued
					in terms of impacts on biodiversity. The endpoint valuation of
					ecosystem damage is based on the annual value of ecosystem
					services (ESS) of one hectare of nature, based on the median
					annual value per hectare of ecosystem services of six terrestrial
					biomes. These values are based on a published meta-analysis of

			Monetisation	Monetisation	
Impact	Footprint indicator	Footprint sub-indicator	factor (EUR)	factor (Int.\$)	Explanation
					the TEEB database (de Groot et al., 2012). Recipe 2016 endpoint
					characterisation factors for terrestrial ecotoxicity are utilised to
					derive the monetisation factors (Huijbregts et al., 2016). A global
					value is preferred rather than location specific values, due to the
					high uncertainty and the fact that the quantification of
					ecosystems damage from Recipe is not location specific (e.g., it
					is not specified where the damage occurs, only the size of the
					damage).
		Freshwater ecotoxicity	0.0406 EUR/kg	0.0579 Int.\$/kg	A compensation cost which expresses the social cost of
			1,4-DB emitted	1,4-DB emitted	pollution and indicates the occurring loss of economic welfare
			to freshwater eq	to freshwater	when pollutants are emitted to the environment, looking at
				eq	ecosystems damage. Ecosystems damage is valued looking at
					the value of ecosystems services lost, which are in turn valued
					in terms of impacts on biodiversity. The endpoint valuation of
					ecosystem damage is based on the annual value of ecosystem
					services (ESS) of one hectare of nature, based on the median
					annual value per hectare of ecosystem services of rivers and
					lakes. These values are based on a published meta-analysis of
					the TEEB database (de Groot et al., 2012). Recipe 2016 endpoint
					characterisation factors for freshwater ecotoxicity are utilised
					to derive the monetisation factors (Huijbregts et al., 2016). A
					global value is preferred rather than location specific values,
					due to the high uncertainty and the fact that the quantification
					of ecosystems damage from Recipe is not location specific (e.g.,
					it is not specified where the damage occurs, only the size of the
					damage).
		Marine ecotoxicity	0.0019 EUR/kg	0.0026 Int.\$/kg	A compensation cost which expresses the social cost of
			1,4-DB emitted	1,4-DB emitted	pollution and indicates the occurring loss of economic welfare
			to seawater eq	to seawater eq	when pollutants are emitted to the environment, looking at

Impact	Footprint indicator	Footprint sub-indicator	Monetisation factor (EUR)	Monetisation factor (Int.\$)	Explanation
					ecosystems damage. Ecosystems damage is valued looking at the value of ecosystems services lost, which are in turn valued in terms of impacts on biodiversity. The endpoint valuation of ecosystem damage is based on the annual value of ecosystem services (ESS) of one hectare of nature, based on the median annual value per hectare of ecosystem services of open oceans. These values are based on a published meta-analysis of the TEEB database (de Groot et al., 2012). Recipe 2016 endpoint characterisation factors for marine ecotoxicity are utilised to derive the monetisation factors (Huijbregts et al., 2016). A global value is preferred rather than location specific values, due to the high uncertainty and the fact that the quantification of ecosystems damage from Recipe is not location specific (e.g., it is not specified where the damage occurs, only the size of the damage).
	Nitrogen deposition NH₃	Animal Husbandry (in stables)	12.70 EUR/kg NH₃ eq	18.10 Int.\$/kg NH₃ eq	A marginal cost of the abatement measures needed to reach the regulatory target of nitrogen deposition in nature areas. Types and magnitude of emissions that contribute to nitrogen deposition in the Netherlands are based on Van der Maas (2020). The costs to prevent the deposition of 1 mol of Nitrogen per hectare per year from NH3 emissions coming from animal husbandry (in stables) are derived from Van der Born et al. (2020). Adjusted values for nitrogen deposition in other European countries are provided based on PEF characterisation factors and data on the average accumulate exceedance per hectare (European Commission, 2012).
		Use of manure	8.11 EUR/kg NH₃ eq	11.60 Int.\$/kg NH₃ eq	A marginal cost of the abatement measures needed to reach the regulatory target of nitrogen deposition in nature areas. Types and magnitude of emissions that contribute to nitrogen

			Monetisation	Monetisation	
Impact	Footprint indicator	Footprint sub-indicator	factor (EUR)	factor (Int.\$)	Explanation
					deposition in the Netherlands are based on Van der Maas
					(2020). The costs to prevent the deposition of 1 mol of Nitrogen
					per hectare per year from NH3 emissions coming from use of
					manure are derived from Van der Born et al. (2020). Adjusted
					values for nitrogen deposition in other European countries are
					provided based on PEF characterisation factors and data on the
					average accumulate exceedance per hectare (European
					Commission, 2012).
		Other sources	7.09 EUR/kg NH₃	10.10 Int.\$/kg	A marginal cost of the abatement measures needed to reach
			eq	NH₃ eq	the regulatory target of nitrogen deposition in nature areas.
					Types and magnitude of emissions that contribute to nitrogen
					deposition in the Netherlands are based on Van der Maas
					(2020). The costs to prevent the deposition of 1 mol of Nitrogen
					per hectare per year from NH3 emissions coming from other
					sources are derived from Van der Born et al. (2020). Adjusted
					values for nitrogen deposition in other European countries are
					provided based on PEF characterisation factors and data on the
					average accumulate exceedance per hectare (European
					Commission, 2012).
	Nitrogen deposition	Use of machines and	1.23 EUR/kg NOx	1.76 Int.\$/kg	A marginal cost of the abatement measures needed to reach
	NO_x	vehicles	eq	NO_x eq	the regulatory target of nitrogen deposition in nature areas.
					Types and magnitude of emissions that contribute to nitrogen
					deposition in the Netherlands are based on Van der Maas
					(2020). The costs to prevent the deposition of 1 mol of Nitrogen
					per hectare per year from NOx emissions coming from use of
					agricultural machines and vehicles are derived from Van der
					Born et al. (2020). Adjusted values for nitrogen deposition in
					other European countries are provided based on PEF

			Monetisation	Monetisation	
Impact	Footprint indicator	Footprint sub-indicator	factor (EUR)	factor (Int.\$)	Explanation
					characterisation factors and data on the average accumulate
					exceedance per hectare (European Commission, 2012).
		Other sources	2.34 EUR/kg NO _x	3.33 Int.\$/kg	A marginal cost of the abatement measures needed to reach
			eq	NO_x eq	the regulatory target of nitrogen deposition in nature areas.
					Types and magnitude of emissions that contribute to nitrogen
					deposition in the Netherlands are based on Van der Maas
					(2020). The costs to prevent the deposition of 1 mol of Nitrogen
					per hectare per year from NOx emissions coming from other
					sources are derived from Van der Born et al. (2020). Adjusted
					values for nitrogen deposition in other European countries are
					provided based on PEF characterisation factors and data on the
					average accumulate exceedance per hectare (European
					Commission, 2012).
	Particulate matter		65.10 EUR/kg	75.00 Int.\$/kg	A compensation cost which expresses the social cost of
	(PM) formation		PM2.5 eq	PM2.5 eq	pollution and indicates the occurring loss of economic welfare
					when pollutants are emitted to the environment, looking at
					human health damage (morbidity, i.e., sickness and disease, and
					premature mortality). The endpoint valuation of human health
					is based on on valuation of a DALY (Disability Adjusted Life
					Year). Recipe 2016 endpoint characterisation factors for PM
					formation are utilised to derive the monetisation factors
					(Huijbregts et al., 2016). Country-specific characterisation
					factors are given.
	Photochemical oxidan	t	0.83 EUR/kg	1.18 Int.\$/kg	A compensation cost which expresses the social cost of
	formation (POF)		NMVOC	NMVOC	pollution and indicates the occurring loss of economic welfare
	NMVOC				when pollutants are emitted to the environment, looking at
	Photochemical oxidan	t	2.95 EUR/kg NO _x	4.19 Int\$/kg NO _x	human health damage (morbidity, i.e., sickness and disease, and
	formation (POF) NO _x		eq	eq	premature mortality) and ecosystems damage. Ecosystems

			Monetisation	Monetisation	
Impact	Footprint indicator	Footprint sub-indicator	factor (EUR)	factor (Int.\$)	Explanation
					damage is valued looking at the value of ecosystems services
					lost, which are in turn valued in terms of impacts on biodiversity.
					The endpoint valuation of ecosystem damage is based on the
					annual value of ecosystem services (ESS) of one hectare of
					nature, based on the median annual value per hectare of
					ecosystem services of six terrestrial biomes. These values are
					based on a published meta-analysis of the TEEB database (de
					Groot et al., 2012). The endpoint valuation of human health is
					based on on valuation of a DALY (Disability Adjusted Life Year).
					Recipe 2016 endpoint characterisation factors for POF are
					utilised to derive the monetisation factors (Huijbregts et al.,
					2016). Country-specific characterisation factors are given.
	Acidification		4.70 EUR/kg SO2	6.70 Int.\$/kg	A compensation cost which expresses the social cost of
			eq	SO2 eq	pollution and indicates the occurring loss of economic welfare
					when pollutants are emitted to the environment, looking at
					ecosystems damage. Ecosystems damage is valued looking at
					the value of ecosystems services lost, which are in turn valued
					in terms of impacts on biodiversity. The endpoint valuation of
					ecosystem damage is based on the annual value of ecosystem
					services (ESS) of one hectare of nature, based on the median
					annual value per hectare of ecosystem services of six terrestrial
					biomes. These values are based on a published meta-analysis of
					the TEEB database (de Groot et al., 2012). Recipe 2016 endpoint
					characterisation factors for acidification are utilised to derive
					the monetisation factors (Huijbregts et al., 2016). Country-
					specific characterisation factors are given.
	Ozone layer depleting		56.40 EUR/kg	65.40 Int.\$/kg	A compensation cost which expresses the social cost of
	emissions		CFC-11 eq	CFC-11 eq	pollution and indicates the occurring loss of economic welfare
					when pollutants are emitted to the environment, looking at

			Monetisation	Monetisation	
Impact	Footprint indicator	Footprint sub-indicator	factor (EUR)	factor (Int.\$)	Explanation
					human health damage (morbidity, i.e., sickness and disease, and
					premature mortality). The endpoint valuation of human health
					is based on on valuation of a DALY (Disability Adjusted Life
					Year). The global Recipe 2016 endpoint characterisation factor
					for Ozone layer depleting emissions is utilised to derive the
					monetisation factor (Huijbregts et al., 2016). The monetisation
					factor for ozone layer depleting emissions also includes the cost
					of damage to agricultural crops taken from CE Delft (De Bruyn
					et al., 2018). The cost of damage to agricultural crops represents
					average damage costs for ozone depletion for an average
					emission source in the Netherlands. Although the damage could
					be different in different geographies, for example because of
					different thickness of the ozone layer, at the moment the value
					is used without adjustments for different countries due to the
					lack of an appropriate coefficient for regional adjustments.
Water pollution	Toxic emissions to	Human toxicity	103,000	119,000	A compensation cost which expresses the Value of Statistical
	water		EUR/DALY	Int.\$/DALY	Life (VSL) based on a meta-analysis of the Value of Statistical
					Life (VSL) from 92 willingness-to-pay studies, carried out by the
					OECD (Biausque, 2012).
		Terrestrial ecotoxicity	0.0003 EUR/kg	0.0004 Int.\$/kg	A compensation cost which expresses the social cost of
			1,4-DB emitted	1,4-DB emitted	pollution and indicates the occurring loss of economic welfare
			to industrial soil	to industrial soil	when pollutants are emitted to the environment, looking at
			eq	eq	ecosystems damage. Ecosystems damage is valued looking at
					the value of ecosystems services lost, which are in turn valued
					in terms of impacts on biodiversity. The endpoint valuation of
					ecosystem damage is based on the annual value of ecosystem
					services (ESS) of one hectare of nature, based on the median
					annual value per hectare of ecosystem services of six terrestrial
					biomes. These values are based on a published meta-analysis of

Impact	Footprint indicator	Footprint sub-indicator	Monetisation factor (EUR)	Monetisation factor (Int.\$)	Explanation
трисс	r ootprine maleator	T GOLPHINE SUB INGICACO	raccor (Eorly	raccor (intag)	the TEEB database (de Groot et al., 2012). Recipe 2016 endpoint characterisation factors for terrestrial ecotoxicity are utilised to derive the monetisation factors (Huijbregts et al., 2016). A global value is preferred rather than location specific values, due to the high uncertainty and the fact that the quantification of ecosystems damage from Recipe is not location specific (e.g., it is not specified where the damage occurs, only the size of the
					damage).
		Freshwater ecotoxicity	0.0406 EUR/kg 1,4-DB emitted to freshwater eq	0.0579 Int.\$/kg 1,4-DB emitted to freshwater eq	A compensation cost which expresses the social cost of pollution and indicates the occurring loss of economic welfare when pollutants are emitted to the environment, looking at ecosystems damage. Ecosystems damage is valued looking at the value of ecosystems services lost, which are in turn valued in terms of impacts on biodiversity. The endpoint valuation of ecosystem damage is based on the annual value of ecosystem services (ESS) of one hectare of nature, based on the median annual value per hectare of ecosystem services of rivers and lakes. These values are based on a published meta-analysis of the TEEB database (de Groot et al., 2012). Recipe 2016 endpoint characterisation factors for freshwater ecotoxicity are utilised
					to derive the monetisation factors (Huijbregts et al., 2016). A global value is preferred rather than location specific values, due to the high uncertainty and the fact that the quantification of ecosystems damage from Recipe is not location specific (e.g., it is not specified where the damage occurs, only the size of the damage).
		Marine Ecotoxicity	0.0019 EUR/kg 1,4-DB emitted	0.0026 Int.\$/kg 1,4-DB emitted	A compensation cost which expresses the social cost of
			to seawater eq	to seawater eq	pollution and indicates the occurring loss of economic welfare when pollutants are emitted to the environment, looking at

Impact	Footprint indicator	Footprint sub-indicator	Monetisation	Monetisation	Evalenation
Impact	Footprint indicator	Footprint sub-indicator	factor (EUR)	factor (Int.\$)	ecosystems damage. Ecosystems damage is valued looking at the value of ecosystems services lost, which are in turn valued in terms of impacts on biodiversity. The endpoint valuation of ecosystem damage is based on the annual value of ecosystem services (ESS) of one hectare of nature, based on the median annual value per hectare of ecosystem services of open oceans. These values are based on a published meta-analysis of the TEEB database (de Groot et al., 2012). Recipe 2016 endpoint characterisation factors for marine ecotoxicity are utilised to derive the monetisation factors (Huijbregts et al., 2016). A global value is preferred rather than location specific values, due to the high uncertainty and the fact that the quantification of ecosystems damage from Recipe is not location specific (e.g., it
					is not specified where the damage occurs, only the size of the damage).
	Freshwater eutrophication		203 EUR/kg P eq to freshwater	290 Int.\$/kg P eq to freshwater	A combination of restoration and compensation costs based on a literature review on the costs of eutrophication. Restoration costs express average abatement cost for bringing nutrient levels to a regulatory target, for the impacts that are reversible. Compensation costs express other damage (economic damage, damage to human health and biodiversity loss), for residual impacts after restoration has taken place. Country specific factors can be derived based on water basin-level risk of eutrophication.
	Marine eutrophication	1	14.10 EUR/kg N eq to marine water	20.10 Int.\$/kg N eq to marine water	A combination of restoration and compensation costs based on a literature review on the costs of eutrophication. Restoration costs express average abatement cost for bringing nutrient levels to a regulatory target, for the impacts that are reversible. Compensation costs express other damage (economic damage,

Impact	Footprint indicator	Footprint sub-indicator	Monetisation factor (EUR)	Monetisation factor (Int.\$)	Explanation
					damage to human health and biodiversity loss), for residual
					impacts after restoration has taken place.
Soil pollution	Toxic emissions to soil	Human toxicity	103,000	119,000	A compensation cost which expresses the value of a Disability
			EUR/DALY	Int.\$/DALY	Adjusted Life Year (DALY) based on a meta-analysis of the
					Value of Statistical Life (VSL) from 92 willingness-to-pay
					studies, carried out by the OECD (Biausque, 2012).
		Terrestrial ecotoxicity	0.0003 EUR/kg	0.0004 Int.\$/kg	A compensation cost which expresses the social cost of
			1,4-DB emitted	1,4-DB emitted	pollution and indicates the occurring loss of economic welfare
			to industrial soil	to industrial soil	when pollutants are emitted to the environment, looking at
			eq	eq	ecosystems damage. Ecosystems damage is valued looking at
					the value of ecosystems services lost, which are in turn valued
					in terms of impacts on biodiversity. The endpoint valuation of
					ecosystem damage is based on the annual value of ecosystem
					services (ESS) of one hectare of nature, based on the median
					annual value per hectare of ecosystem services of six terrestrial
					biomes. These values are based on a published meta-analysis of
					the TEEB database (de Groot et al., 2012). Recipe 2016 endpoint
					characterisation factors for terrestrial ecotoxicity are utilised to
					derive the monetisation factors (Huijbregts et al., 2016). A global
					value is preferred rather than location specific values, due to the
					high uncertainty and the fact that the quantification of
					ecosystems damage from Recipe is not location specific (e.g., it
					is not specified where the damage occurs, only the size of the
					damage).
		Freshwater ecotoxicity	0.0406 EUR/kg	0.0579 Int.\$/kg	A compensation cost which expresses the social cost of
			1,4-DB emitted	1,4-DB emitted	pollution and indicates the occurring loss of economic welfare
			to freshwater eq	to freshwater	when pollutants are emitted to the environment, looking at
				eq	ecosystems damage. Ecosystems damage is valued looking at

			Monetisation	Monetisation	
Impact	Footprint indicator	Footprint sub-indicator	factor (EUR)	factor (Int.\$)	Explanation
					the value of ecosystems services lost, which are in turn valued
					in terms of impacts on biodiversity. The endpoint valuation of
					ecosystem damage is based on the annual value of ecosystem
					services (ESS) of one hectare of nature, based on the median
					annual value per hectare of ecosystem services of rivers and
					lakes. These values are based on a published meta-analysis of
					the TEEB database (de Groot et al., 2012). Recipe 2016 endpoint
					characterisation factors for freshwater ecotoxicity are utilised
					to derive the monetisation factors (Huijbregts et al., 2016). A
					global value is preferred rather than location specific values,
					due to the high uncertainty and the fact that the quantification
					of ecosystems damage from Recipe is not location specific (e.g.,
					it is not specified where the damage occurs, only the size of the
					damage).
		Marine Ecotoxicity	0.0019 EUR/kg	0.0026 Int.\$/kg	A compensation cost which expresses the social cost of
			1,4-DB emitted	1,4-DB emitted	pollution and indicates the occurring loss of economic welfare
			to seawater eq	to seawater eq	when pollutants are emitted to the environment. The used cost
					is an environmental price given at midpoint level, accounting
					for the endpoint of ecosystems (De Bruyn et al., 2018). Country-
					specific factors are derived adjusting based on population
					density to calculate a global average.
Land occupation	Land occupation	Tropical forest	2,130	3,030 Int.\$/	A compensation cost which expresses the opportunity cost of
			EUR/(MSA*ha*yr)	(MSA*ha*yr)	land occupation based on the value of ecosystem services for
		Other forest	1,020	1,450 Int.\$/	main biomes based on a meta-analysis from TEEB (De Groot et
			EUR/(MSA*ha*yr)	(MSA*ha*yr)	al., 2012). Country-specific factors can be derived based on
		Woodland/shrubland	1,370	1,960 Int.\$/	biome cover per country.
			EUR/(MSA*ha*yr)	(MSA*ha*yr)	

			Monetisation	Monetisation	
Impact	Footprint indicator	Footprint sub-indicator	factor (EUR)	factor (Int.\$)	Explanation
		Grassland/savannah	2,440	3,470 Int.\$/	
			EUR/(MSA*ha*yr)	(MSA*ha*yr)	
		Inland wetland	14,900	21,300 Int.\$/	•
			EUR/(MSA*ha*yr)	(MSA*ha*yr)	
		Coastal wetland	11,000	15,700 Int.\$/	
			EUR/(MSA*ha*yr)	(MSA*ha*yr)	
Land transformation	Land transformation	Tropical forest	3,610	4,160	A restoration cost which expresses the average cost of
			EUR/(MSA*ha)	Int.\$/(MSA*ha)	ecosystem restoration projects in different biomes based on a
		Other forest	2,500	2,880	review of case studies (TEEB, 2009). Costs include capital
			EUR/(MSA*ha)	Int.\$/(MSA*ha)	investment and maintenance of the restoration project.
		Woodland/shrubland	1,040	1,190	
			EUR/(MSA*ha)	Int.\$/(MSA*ha)	
		Grassland/savannah	272	313	
			EUR/(MSA*ha)	Int.\$/(MSA*ha)	
		Inland wetland	34,500	39,800	
			EUR/(MSA*ha)	Int.\$/(MSA*ha)	
		Coastal wetland	3,010	3,470	•
			EUR/(MSA*ha)	Int.\$/(MSA*ha)	
Fossil fuel depletion	Fossil fuel depletion		0.448 EUR/kg oil	0.516 Int.\$/kg oil	A compensation cost which expresses the future loss of
			eq	eq	economic welfare due to increased extraction costs of fossil
					fuels in the future (Huijbregts et al., 2016).
(Other) non-renewable	(Other) non-renewable		0.227 EUR/kg Cu	0.261 Int.\$/kg	A compensation cost which expresses the future loss of
material depletion	material depletion		eq	Cu eq	economic welfare due to increased extraction costs of non-
					renewable materials in the future (Huijbregts et al., 2016).
Scarce water use	Scarce blue water use		1.290 EUR/m3	1.490 Int.\$/m3	A restoration cost which expresses the annualized cost of
					desalination, including the cost of operation and maintenance,
					electrical and thermal energy, as well as the cost of covering

lean a at			Monetisation	Monetisation	- Combonation
Impact	Footprint indicator	Footprint sub-indicator	factor (EUR)	factor (Int.\$)	Explanation and repaying initial capital and operational costs of desalination
					(World Bank, 2012).
Soil degradation	Soil organic carbon		0.0302 EUR/kg	0.0430 Int.\$/kg	A compensation cost which expresses the damage cost for the
	(SOC) loss		SOC loss	SOC loss	chemical, physical, biological and ecological decline of soil due
					to loss of SOC, based on a study on the shadow prices of soil
					quality by TNO and Wageningen University (Ligthart and van
					Harmelen, 2019).
	Soil loss from wind		0.0274 EUR/kg	0.0316 Int.\$/kg	A compensation cost which expresses the cost of soil erosion
	erosion		soil loss	soil loss	based on an extensive review on the costs of soil erosion by
	Soil loss from water		0.0215 EUR/kg	0.0247 Int.\$/ kg	FAO (2014). The costs include on-site damage such as loss of
	erosion		soil loss	soil loss	nutrients, reduced harvests and reduced value of the land, and
					off-site damage such as the silting up of waterways, flooding
					and repairing public and private property.
	Soil compaction ⁷		0.55	0.79	A damage cost based on lost future crop yields. Other off-site
			EUR/corrected	Int.\$/corrected	costs such as flooding, water pollution and increased GHG
			tkm	tkm	emissions, associated with subsoil compaction, are not included
					in the monetisation factor. The damage cost from soil
					compaction is calculated based on the average gross revenue
					of crop production lost due to irreversible subsoil compaction.
					This is quantified as the present value future crop yield losses
					(over 100 years) that are due to one year of machinery use.
					Average yearly loss (%) of crop yield per corrected tkm per ha
					over 100 years of production is provided in Stoessel et al. (2018),
					with country- and region-specific factors. Average value of
					annual gross production per hectare (in euro/ha) is estimated
					from data collected from FAOSTAT for all crops produced in

⁷ Values represent a European average, rather than a global one.

			Monetisation	Monetisation	
Impact	Footprint indicator	Footprint sub-indicator	factor (EUR)	factor (Int.\$)	Explanation
					each country (FAOSTAT, 2018). Since the average yearly loss is
					given for 100 years of production, future crop production losses
					(0.12 eur/corrected tkm) are discounted to determine the
					present value, with a discount rate equal to 3% (Werkgroep
					discontovoet, 2015) and summed over 100 years.

4.2 Social impacts

Table 5 provides the monetisation factors for all social impacts and corresponding footprint indicators in true pricing. Each monetisation factor represents a restoration, compensation, prevention or retribution cost, or a combination of those, as explained in Section 2.3. An explanation of the types of costs and sources is also provided. All values are expressed in euro 2021.

Table 5: Monetisation factors for social impacts in true pricing.

Impact	Footprint indicator	Footprint sub-indicator	Monetisation factor (EUR)	Monetisation factor (Int.\$)	Explanation
Child labour	Underage workers	Underage workers below minimum age for light work (12 or 13)	15,100 EUR/child FTE	21,600 Int.\$/child FTE	A combination of restoration, compensation, prevention and retribution cost. The restoration cost expresses the costs of providing quality education for children not attending school
		involved in non- hazardous economic work			and the costs of implementing additional components of reintegration programmes for children involved in hazardous child labour (ILO, 2003). The compensation cost expresses the
		Underage workers above minimum age for light work and below minimum age (12-14 or 13-15) involved in non- hazardous non-light	5,590 EUR/child FTE	7,970 Int.\$/child FTE	loss of future earnings when a child is prevented from attending school during youth (Psacharopoulos, 1999; ILO, 2003; Feyrer, 2006). The prevention cost expresses the cost of generic auditing setup, to prevent future instances. Finally, the retribution cost represents a penalty for instances of child labour based on the weighted average of penalties from various
		economic work Underage workers below minimum age (12 or 13) involved in hazardous work	32,200 EUR/child FTE	45,800 Int.\$/child FTE	countries that expresses a global penalty.
		Workers above minimum age (14 or 15) and below 18 involved in hazardous work	16,100 EUR/FTE	23,000 Int.\$/FTE	-

Impact	Footprint indicator	Footprint sub-indicator	Monetisation factor (EUR)	Monetisation factor (Int.\$)	Explanation
	Underage workers that		21,900	25,300	
	are not attending		EUR/children	Int.\$/children	
	school				
	Labour force to be		7.94 EUR/FTE	8.78 Int.\$/FTE	
	audited for child				
	labour				
Forced Labour	Forced workers (least		12,000 EUR/FTE	17,200 Int.\$/FTE	A combination of restoration, compensation, prevention and
	severe)				retribution costs. The restoration cost expresses the restitution
	Forced workers		65,900 EUR/FTE	93,900 Int.\$/FTE	of past economic losses of forced workers in debt bondage, as
	(medium severe)				well as other costs for reintegration (ILO, 2009; Kara, 2014). The
	Forced workers (most		120,000 EUR/FTE	171,000	compensation cost expresses the cost of lost health valued
	severe)			Int.\$/FTE	using DALY for forced workers victims of abuse (Biausque, 2012).
	Forced workers who		16,500 EUR/FTE	19,000 Int.\$/FTE	The prevention cost expresses the cost of generic auditing
	are in debt bondage				setup, to prevent future instances. Finally, the retribution cost
	Forced workers who		34,900 EUR/FTE	41,100 Int.\$/FTE	represents a penalty for instances of forced labour based on the
	are victims of abuse				weighted average of penalties from various countries that
	Labour force to be		7.94 EUR/FTE	8.78 Int.\$/FTE	 expresses a global penalty. Restoration, retribution, and compensation costs for harassment may also be included, i
	audited for forced				
	labour				abuse exists in the specific case.
Discrimination	Female workers		1,720 EUR/FTE	2,450 Int.\$/FTE	A combination of restoration, prevention, and retribution costs.
	without maternity				The restoration cost represents the restitution of wage lost due
	leave provision				to denied maternity leave, gender discrimination and unequal
	Value of denied		1.06 EUR/EUR	1.06 Int.\$/Int.\$	opportunities. The prevention cost expresses the cost o
	maternity leave				generic auditing setup, to prevent future instances of
	Wage gap from gender		1.06 EUR/EUR	1.06 Int.\$/Int.\$	discrimination. The retribution cost represents a penalty for the
	discrimination				violation of denied maternity leave.
	Wage gap from		1.06 EUR/EUR	1.06 Int.\$/Int.\$	-
	unequal opportunities				

Impact	Footprint indicator	Footprint sub-indicator	Monetisation factor (EUR)	Monetisation factor (Int.\$)	Explanation
	Labour force to be		7.94 EUR/FTE	8.78 Int.\$/FTE	
	audited for				
	discrimination				
Underpayment in the	Wage gap of workers		1.56 EUR/EUR	1.56 Int.\$/Int.\$	A combination of compensation, prevention, and retribution
value chain	earning below				costs. The compensation cost expresses the gap to a decent
	minimum wage				living wage, as well as the interest rate. The prevention cost
	Wage gap of workers		1.06 EUR/EUR	1.06 Int.\$/Int.\$	expresses the cost of generic auditing setup, to prevent future
	earning above				instances. The retribution cost represents a penalty for the
	minimum wage but				amount of the wage gap that is below the legal minimum wage,
	below decent living				based on the weighted average of penalties from various
	wage				countries that expresses a global penalty.
	Labour force to be		7.94 EUR/FTE	8.78 Int.\$/FTE	
	audited for insufficient				
	wages				
Lack of social security	Workers without legal		2,280 EUR/FTE	3,250 Int.\$/FTE	A combination of compensation, prevention, and retribu
	social security				costs. The compensation cost represents the restitution of the
	Value of denied paid		1.06 EUR/EUR	1.06 Int.\$/Int.\$	denied paid leave. The prevention cost expresses the cost of
	leave				generic auditing setup, to prevent future instances. Finally, the
	Labour force to be		7.94 EUR/FTE	8.78 Int.\$/FTE	retribution cost represents a penalty for the workers without
	audited for insufficient				social security, in the case of a legal requirement by law, based
	social security				on the weighted average of penalties from various countries
					that expresses a global penalty.
Excessive and	Workers performing		107 EUR/FTE	153 Int.\$/FTE	A combination of compensation, prevention, and retribution
underpaid overtime	illegal overtime				costs. The compensation cost represents the wage gap due to
	Workers performing		107 EUR/FTE	153 Int.\$/FTE	underpaid overtime. The prevention cost expresses the cost of
	underpaid overtime				generic auditing setup, to prevent future instances. Finally, the
	Overtime pay gap		1.06 EUR/EUR	1.06 Int.\$/Int.\$	retribution cost represents a penalty cost for overtime work

			Monetisation	Monetisation	
Impact	Footprint indicator	Footprint sub-indicator	factor (EUR)	factor (Int.\$)	Explanation
	Labour force to be		7.94 EUR/FTE	8.78 Int.\$/FTE	above the maximum legal limit or paid under legal requirements
	audited for illegal				based on the weighted average of penalties from various
	overtime				countries that expresses a global penalty.
Insufficient income	Income gap		1.06 EUR/EUR	1.06 Int.\$/Int.\$	A compensation cost that represents the restitution of the
					income gap.
Occurrence of	Workers who	Workers who	28,600	33,000	A combination of restoration, compensation, prevention, and
harassment	experienced	experienced non-	EUR/worker	Int.\$/worker	retribution costs. The restoration cost represents average
	harassment	physical non-sexual			medical costs for injuries, anxiety, depression, and PTSD
		harassment			resulting from workplace harassment estimated for the
		Workers who	30,400	35,700	Netherlands and adapted to other countries using value transfer
		experienced non-	EUR/worker	Int.\$/worker	(Chappell & Di Martino, 2006, p.138; WHO, 2021;
		physical sexual			Volksgezondheid en Zorg, 2019). The compensation cost
		harassment			represents the cost of loss of future well-being due to long-
		Workers who	55,100	64,300	term mental health impact of victims of harassment. The
		experienced physical	EUR/worker	Int.\$/worker	prevention cost expresses the cost of generic auditing setup, to
		non-sexual harassment			prevent future instances. Finally, the retribution cost represents
		Workers who	62,200	74,500	a penalty for instances of physical non-sexual and sexual
		experienced non-	EUR/worker	Int.\$/worker	harassment based on the weighted average of penalties from
		severe physical sexual			various countries that expresses a global penalty.
		harassment			
		Workers who	70,200	85,800	_
		experienced severe	EUR/worker	Int.\$/worker	
		physical sexual			
		harassment			
	Labour force to be		7.94 EUR/FTE	8.78 Int.\$/FTE	_
	audited for harassment				
Lack of freedom of	Instances of denied		369	527	A combination of prevention and retribution cost. The
association	freedom of association		EUR/violation	Int.\$/violation	prevention cost expresses the cost of generic auditing setup, to
	_				

			Monetisation	Monetisation	
Impact	Footprint indicator	Footprint sub-indicator	factor (EUR)	factor (Int.\$)	Explanation
	Labour force to be		7.94 EUR/FTE	8.78 Int.\$/FTE	prevent future instances. The retribution cost expresses a
	audited to be audited				penalty for denied freedom of association based on a review of
	for denied freedom of				penalties from five different legal systems and adjusted based
	association				on the square root of the corresponding countries' population
					to express a global penalty. Restoration and compensation are
					not included so as not to double count the impact of freedom
					of association with the other social impacts.
Negative effects on	Non-fatal occupational	Insured non-fatal	3,620	4,170	A combination of compensation, prevention, and retribution
employee health and	incidents	occupational incidents	EUR/incident	Int.\$/incident	costs. The compensation cost represents the average cost of
safety		Uninsured non-fatal	3,830	4,470	medical expenses for occupational injuries not covered by the
		occupational incidents	EUR/incident	Int.\$/incident	employer estimated from Dutch data and adapted to other
	Fatal occupational		3,070,000	3,540,000	countries using value transfer (WHO, 2021 Volksgezondheid en
	incidents		EUR/incident	Int.\$/incident	Zorg), the value of health (DALY) loss in the case of non-fatal
	Occupational injuries		2,690	3,840	incidents and the VSL in the cause of fatal incidents as a
	with breach of H&S		EUR/incident	Int.\$/incident	compensation to the family of the victim (Biausque, 2012). The
	standards				prevention cost expresses the cost of generic auditing setup, to
	Work performed in		1,500 EUR/FTE	2,140 Int.\$/FTE	prevent future instances. Finally, the retribution costs represent
	violation of H&S				a penalty for the cases in which workers perform their duties in
	standards				conditions which violate Health and Safety regulations, which
	Labour force to be		7.94 EUR/FTE	8.78 Int.\$/FTE	is based on the weighted average of penalties from various
	audited for H&S				countries that expresses a global penalty.

Glossary

True price

The true price of a product is the sum of the market price and the true price gap of a product. It reflects the price a buyer would have to pay for a product if the cost of remediating its unsustainable impacts would be added on top of its price.

True price gap

The true price gap of a product is the sum of all the remediation costs of all unsustainable impacts caused by the production and consumption of that product.

Unsustainable impact

An unsustainable impact is a realised or expected harm to the Natural, Financial, Social, Human, Manufactured or Intellectual Capital flow or experienced well-being of people or communities due to a breach of one or more generally accepted universal rights. Can also be referred to as unsustainable externality.

Externality

A societal cost or benefit that affects a party who did not choose to incur this cost or benefit. A societal cost is a negative externality while a societal benefit is a positive externality.

Social impacts

Impact on people and communities caused by production and consumption. In the context of a true price gap assessment, social impacts are unsustainable externalities related to breaches of human rights and labour rights.

Environmental impacts

Impacts on the environment, people and communities caused by production and consumption. In the context of a true price gap assessment, environmental impacts are unsustainable externalities related to the breaches of environmental rights.

Footprint indicators

Variables that quantify the actual social and environmental impacts that are in scope to calculate the true price of a product. Footprint indicators can be monetized and compared meaningfully across different life cycle steps.

Monetisation factor

Estimate of the remediation cost of the impacts measured by the footprint indicators. In some cases, different monetisation factors may be country-dependent and be different for the same impact for different parts of the product life cycle (for example, if some damage cost coefficients are proportional to local income levels and the damage occurs in different countries).

References

- Alkemade, R., Van Oorschot, M., Miles, L., Nellemann, C., Bakkenes, M., & Ten Brink, B. (2009). GLOBIO3: a framework to investigate options for reducing global terrestrial biodiversity loss. *Ecosystems*, 12(3), 374-390. https://doi.org/10.1007/s10021-009-9229-5
- Benoit-Norris, C., Cavan, D. A., & Norris, G. (2012). Identifying social impacts in product supply chains: overview and application of the social hotspot database. *Sustainability*, *4*(9), 1946-1965. https://doi.org/10.3390/su4091946
- Biausque, V. (2012), *The Value of Statistical Life: A Meta-Analysis*, OECD, Paris, ENV/EPOC/WPNEP(2010)9/FINAL.
- Chappell, D., & Di Martino, V. (2006). Violence at work. International Labour Organization.
- CHRB. (2018) Corporate Human Rights Benchmark Methodology 2018: For the Agricultural Products, Apparel and Extractives Industries. Section D: Performance Corporate Human Rights Practices. Retrieved from
 - https://assets.worldbenchmarkingalliance.org/app/uploads/2021/04/CHRB2018MethodologyAGAP EX.pdf
- Croes, P. R., & Vermeulen, W. J. V. (2015). Comprehensive life cycle assessment by transferring of preventative costs in the supply chain of products. A first draft of the Oiconomy system. *Journal of Cleaner Production*, 102, 177–187. https://doi.org/10.1016/J.JCLEPRO.2015.04.040
- De Bruyn, S., Bijleveld, M., De Graaff, L., Schep, E., Schroten, A., Vergeer, R., & Ahdour, S. (2018). Environmental Prices Handbook-EU28 version. *Delft University of Technology*. Available from https://www.cedelft.eu/en/publications/2191/environmental-prices-handbook-eu28-version
- de Groot, R., Brander, L., van der Ploeg, S., Costanza, R., Bernard, F., Braat, L., Christie, M., Crossman, N., Ghermandi, A., Hein, L., Hussain, S., Kumar, P., McVittie, A., Portela, R., Rodriguez, L. C., ten Brink, P., & van Beukering, P. (2012). Global estimates of the value of ecosystems and their services in monetary units. *Ecosystem Services*, 1(1), 50–61. https://doi.org/10.1016/J.ECOSER.2012.07.005
- European Commission (2012). Product Environmental Footprint (PEF) Guide. Deliverable 2 and 4A of the Administrative Arrangement between DG Environment and the Joint Research Centre No. N 070307/2009/552517, Including Amendment No. 1 from December 2010. Retrieved from: https://ec.europa.eu/environment/eussd/pdf/footprint/PEF%20methodology%20final%20draft.pd
- Falkenmark, M., & Rockstrom, J. (2004). *Balancing Water for Humans and Nature. The New Approach in Ecohydrology*, Earthscan, London.
- FAO. (2014). *Food Wastage Footprint Full-Cost Accounting-Final Report.* Retrieved from: http://www.fao.org/3/a-i3991e.pdf

- FAOSTAT. (2018). Value of Agricultural Production. Available at: http://www.fao.org/faostat/en/#data/QV
- Feyrer, J. (2006). *Estimating externalities to experience in a macro Mincer model*. Retrieved from: https://pdfs.semanticscholar.org/6faa/86d0dc0b6c59263e6eb86e7242f5ad973af0.pdf
- Galgani, P., Woltjer, G., & de Adelhart Toorop, R. (2021a). *True pricing assessment method for agri-food products.* (forthcoming)
- Galgani, P., Woltjer, G., de Adelhart Toorop, R. & de Groot Ruiz, A. (2021b). *Fossil fuel and other non-renewable material depletion: Impact-specific module of the true pricing method for agri-food products.* (forthcoming)
- Galgani, P., Woltjer, G., de Adelhart Toorop, R. & de Groot Ruiz, A. (2021c). *Scarce water use: Impact-specific module of the true pricing method for agri-food products.* (forthcoming)
- Galgani, P., Woltjer, G., de Adelhart Toorop, R. & de Groot Ruiz, A. (2021d). *Valuation framework for true* price assessment of agri-food products. Retrieved from: https://trueprice.org/true-price-resources/
- Galgani, P., Woltjer, G., de Adelhart Toorop, R., de Groot Ruiz, A., & Varoucha, E. (2021e). *Contribution to Climate Change: Impact-specific module of the true pricing method for agri-food products.*Retrieved from: https://trueprice.org/publications/contribution-to-climate-change/
- Galgani, P., Woltjer, G., de Adelhart Toorop, R., de Groot Ruiz, A., & Varoucha, E. (2021f). *Land use, land use change, biodiversity and ecosystem services: Impact-specific module of the true pricing method for agri-food products.* Retrieved from: https://trueprice.org/publications/land-use/
- Galgani, P., Woltjer, G., de Adelhart Toorop, R., Varoucha, E. & Kanidou, D. (2021g). *Soil degradation: Impact-specific module of the true pricing method for agri-food products.* (forthcoming)
- Galgani, P., Woltjer, G., Kanidou, D., Varoucha, E., & de Adelhart Toorop, R. (2021h). *Air, soil and water pollution: Impact-specific module of the true pricing method for agri-food products.* (forthcoming)
- Goedkoop, M. J., Indrane, D., & de Beer, I. M. (2018). Product Social Impact Assessment Handbook 2018. *Amersfoort*, September1st, 2018.
- Hanegraaf, M., van den Elsen, E., de Haan, J., & Visser, S. (2019). *Bodemkwaliteitsbeoordeling van landbouwgronden in Nederland indicatorset en systematiek, versie 1.0.* https://doi.org/10.18174/498307
- Huijbregts, M. A., Steinmann, Z. J., Elshout, P. M., Stam, G., Verones, F., Vieira, M. D. M., ... & van Zelm, R. (2016).

 ReCiPe 2016: A harmonized life cycle impact assessment method at midpoint and endpoint level.

 report I: characterization; RIVM Report 2016-0104. *National Institute for Human Health and the Environment, Bilthoven.*
- ILO. (1999). C182 Worst Forms of Child Labour Convention, 1999. Retrieved from https://www.ilo.org/dyn/normlex/en/f?p=NORMLEXPUB:12100:0::NO::P12100_ILO_CODE:C182

- ILO. (2003). *Investing in every child. An economic study of the costs and benefits of eliminating child labour.*International Labour Office, Geneva.
- ILO. (2009). The Cost of Coercion, Global Report Under the Follow-up to the ILO Declaration on Fundamental Principles and Rights at Work. International Labour Office, Geneva.
- ILO. (2013). Code of Conduct and Guidelines to Prevent and Address Sexual Harassment in Workplaces.

 Retrieved from: https://www.ilo.org/wcmsp5/groups/public/---asia/---ro-bangkok/---ilo-colombo/documents/publication/wcms_525537.pdf
- ILO. (2019a). *What is child labour*. International Labour organization. Retrieved from https://www.ilo.org/ipec/facts/lang--en/index.htm
- ILO. (2019b). *Eliminating Forced Labour: Handbook for Parliamentarians No. 30.* Retrieved from https://www.ilo.org/global/topics/forced-labour/publications/WCMS_723507/lang--en/index.htm
- ILO. (2019c). International Labour Standards on Social Security. Retrieved from https://www.ilo.org/global/standards/subjects-covered-by-international-labour-standards/social-security/lang--en/index.htm
- Impact Institute. (2019). Framework for Impact Statements: Beta Version (FIS Beta). Retrieved from https://www.impactinstitute.com/framework-for-impact-statements/
- IPCC, 2018: Summary for Policymakers. In: *Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty* [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)] (pp.32). In Press
- ISO. (2010). ISO 26000:2010 Guidance on social responsibility. doi:10.1016/j.still.2008.08.001
- Kara, S. (2014). Bonded labor: Tackling the system of slavery in South Asia. Columbia University Press.
- Kuik, O., Brander, L., & Tol, R. S. (2009). Marginal abatement costs of greenhouse gas emissions: A metaanalysis. *Energy policy*, 37(4), 1395-1403. https://doi.org/10.1016/j.enpol.2008.11.040
- Lal, R. (2009). Soils and world food security. Soil & Tillage Research, 102, 1–4
- Leigh, J. P. (2011). Economic burden of occupational injury and illness in the United States. *The Milbank Quarterly*, 89(4), 728-772. https://doi.org/10.1111/j.1468-0009.2011.00648.x
- Ligthart, T. N., & van Harmelen, T. (2019). Estimation of shadow prices of soil organic carbon depletion and freshwater depletion for use in LCA. *The International Journal of Life Cycle Assessment, 24(9),* 1602-1619. https://doi.org/10.1007/s11367-019-01589-8

- Milà i Canals, L., Romanya, J., & Cowell, S. J. (2007). Method for assessing impacts on life support functions (LSF) related to the use of 'fertile land' in Life Cycle Assessment (LCA). *Journal of Cleaner Production*, 15(15), 1426-1440. https://doi.org/10.1016/j.jclepro.2006.05.005
- Prokofieva, I., Lucas, B., Thorsen, B. J., & Carlsen, K. (2011). *Monetary values of environmental and social externalities for the purpose of cost-benefit analysis in the EFORWOOD project.* EFI Technical Report 50. European Forest Institute. Available from https://efi.int/publications-bank/monetary-values-environmental-and-social-externalities-purpose-cost-benefit
- Psacharopoulos, G. (1999). *The opportunity cost of child labour: A review of the benefits of education.*Washington: U.S. Department of Labor, Bureau of International Labor Affairs.
- SAI. (2014). Social Accountability 8000 International Standard.
- Stoessel, F., Sonderegger, T., Bayer, P., & Hellweg, S. (2018). Assessing the environmental impacts of soil compaction in Life Cycle Assessment. *Science of the Total Environment*, 630, 913-921. https://doi.org/10.1016/j.scitotenv.2018.02.222
- TEEB. (2009). *TEEB Climate Issues Update*. September 2009. Retrieved from http://www.teebweb.org/media/2009/09/TEEB-Climate-Issues-Update.pdf
- True Price Foundation. (2019). *A Roadmap for True Pricing.* Retrieved from https://trueprice.org/vision-paper-a-roadmap-for-true-pricing/
- True Price Foundation. (2020). *Principles for True Pricing*. Retrieved from https://trueprice.org/true-price-resources/
- UN. (2011). Guiding principles on business and human rights: Implementing the United Nations "Protect,
 Respect and Remedy" framework. Retrieved from
 https://www.ohchr.org/Documents/Publications/GuidingPrinciplesBusinessHR_EN.pdf
- UNEP. (2009). Guidelines for Social Lifecycle Assessment of Products. Paris.
- UNICEF. (2014). *Child Labour and UNICEF in Action: Children at the Centre*. New York: UNICEF. Retrieved from https://www.unicef.nl/media/2535977/child_labour_and_unicef_in_action.pdf
- van den Born, G.J., Couvreur, L., van Dam, J., Geilenkirchen, G., 't Hoen, M., Koelemeijer, R., van Schijndel, M, Vink, M. & van der Zanden, E. (2020), Analyse Stikstofbronmaatregelen Analyse op verzoek van het kabinet van zestien maatregelen om de uitstoot van stikstofoxiden en ammoniak in Nederland te beperken , PBL, TNO, CE Delft and RIVM. Retrieved from https://www.pbl.nl/sites/default/files/downloads/pbl_analyse_stikstofbronmaatregelen_24_april __2020.pdf
- van der Maas, W. (2020). *De effectiviteit van bronmaatregelen: van nationale emissiereducties naar depositie in de natuur,* RIVM. Retrieved from https://www.rivm.nl/documenten/notitie-van-emissienaar-depositie

- van der Velden, N. M., & Vogtländer, J. G. (2017). Monetisation of external socio-economic costs of industrial production: A social-LCA-based case of clothing production. *Journal of Cleaner Production*, 153, 320-330. https://doi.org/10.1016/j.jclepro.2017.03.161
- Volksgezondheid en Zorg. (2019). *Kosten van ziekten*. Retrieved from https://www.volksgezondheidenzorg.info/publicaties-kosten-van-ziekten
- Werkgroep discontovoet. (2015) Rapport Werkgroep discontovoet 2015. Retrieved from https://www.mkba-informatie.nl/mkba-voor-gevorderden/richtlijnen/rapport-werkgroep-discontovoet-2015/
- WHO. (2019). *Health statistics and information systems, Metrics: Disability-Adjusted Life Year (DALY)*. Retrieved from https://www.who.int/healthinfo/global_burden_disease/metrics_daly/en/
- WHO. (2021). WHO-CHOICE estimates of cost for inpatient and outpatient health service delivery. Retrieved from: https://www.who.int/publications/m/item/who-choice-estimates-of-cost-for-inpatient-and-outpatient-health-service-delivery
- World Bank. 2012. Renewable Energy Desalination: An Emerging Solution to Close the Water Gap in the Middle East and North Africa. MENA development report; Washington, DC: World Bank.
- WWF. (2020). Water Risk Filter. Retrieved from: http://waterriskfilter.panda.org/en/Explore/CountryProfiles#compare/1/10

True Price

Haarlemmerplein 2 1013 HS Amsterdam The Netherlands Tel.: +31 202 403 440

info@trueprice.org

2021 True Price Foundation

The text in this document is licensed under a Creative
Commons Attribution-NoDerivs 4.0 International. For more
information consult Attribution-NoDerivs CC BY-ND.
Available at: https://creativecommons.org/share-your-work/licensing-examples/#nd